REACTION OF TROPONE WITH DIMETHYL QUADRICYCLENE-2,3-DICARBOXYLATE. A THERMAL [$_{\pi}6 + _{\pi}2 + _{\pi}2$] CYCLOADDITION CONCURRED WITH A RADICAL ADDITION

Hiroshi Tanida, Tadahiko Tsushima, and Yoshihiro Terui

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan

(Received in Japan 10 December 1971; received in UK for publication 31 December 1971) In an accompanying communication the reaction of tropone (1) with quadricyclene (2) leading to 2,9-<u>exo, cis</u>-quadricyclo[8.2.1.1^{3,8}(<u>exo</u>).0^{2,9}]tetradeca-4,6,11-trien-14-one (3) was presented as the

first example of thermal $\{ {}_{\pi}6 + {}_{\sigma}2 + {}_{\sigma}2 \}$ cycloaddition.¹ This finding prompted us to extend this reaction to derivatives of 1 and 2and we wish to report here the reaction of 1 with dimethyl quadricyclene-2,3-dicarboxylate (4). The effect of the electron-withdrawing carboxylate groups is of interest, particularly from a mechanistic viewpoint.

A mixture of 1 and 4 in a mole ratio of 5 to 1 was heated at 80° in the dark under nitrogen atmosphere for 4 days. Although the reaction products were more complex than those from the reaction of 1 with 2, chromatography of the reaction mixture on silica gel followed by thin layer chromatography on KGF₂₅₄ (Merck) separated three crystalline products; 5, mp 116°, 7% yield; 6, mp 112-114°, 7% yield; and 7, mp 128-129°, 5% yield; each of which was shown to be a 1 : 1 adduct by its elementary analysis and mass spectrum. However, 7 was shown to be almost certainly not a direct product from 1 and 4.² On catalytic reduction, both 5 and 7 absorbed 2 moles of hydrogen in ethanol and 3 moles in acetic acid, while 6absorbed 4 moles in acetic acid. For 5; uv max (cyclohexane) 220 mµ (ϵ 9500), 279 (sh, 2950), and 310 (sh, 448); ir (CHCl₃) 1740 (C=O) and 1720 cm⁻¹ (ester C=O); nmr (CDCl₃) with addition of 0.4 mole ratio of Eu(DPM)₃ as a shift reagent, δ 2.00 (d-m, 1, H_{13a}, J_{13a,13s} = 11.0Hz), 2.37 (d-t, 1, H_{13s}, J_{13a,13s} = 11.0, J_{1,13s} = 1.4), 3.60-3.95 (m, 2, H₃ and H₈), 4.14 (d, 2, H₂ and H₉, J_{2,13a} = 1.7), 4.55 (t, 2, H₁ and

H₁₀, J_{1,135} = J_{1,13a} = 1.4), 5.08 (s, 6, COOCH₃), and 5.95-6.20 (m, 4, vinyl). For \pm ; uv max (cyclohexane) 230 mµ (e 25600) and 305 (6280); ir (CHCl₃) 1720 (ester C=O) 1629, and 1595 cm⁻¹; nmr (CDCl₃) δ 1.15-1.83 (m, 4, H₅ and H₆) 3.16 (broad s-like m (W $\frac{1}{2} \approx 4.5$ Hz), 1, H₇), 3.67 (m, 2, H₁ and H₄), 3.78 (s, 6, COOCH₃), and 6.80-7.25 (m, 5, all H in tropone); nmr with addition of 0.7 mole ratio of Eu(DPM)₃, δ 7.95 (h-like d-d, 1, H₆'), 8.17 (h-like d-d, 1, H₅'), 8.64 (h-like d-d, 1, H₄'), 9.66 (d, 1, H₃'), and 13.03 (d, 1, H₇'), and J₃, $_{A}$ ' = 9.2 Hz, J₄', $_{5}$ ' = 10.8, J₅', $_{A}$ ' = 8.2, and J₆', $_{7}$ ' = 11.8. For Z; uv max (cyclohexane) 226 mµ (e 11700); ir (CHCl₃) 1715 and 1667 cm⁻¹ (a, β unsaturated C=O); nmr (CDCl₃) δ 1.47 (d-m, 1, H_{12a}, J_{12a,125} = 9.5 Hz), 2.26-2.72 (pair of broad d, 2, H₂ and H₈, J_{2,8} = 8.7), 2.67 (d+t, 1, H₁₂₅, J_{120,125} = 9.5, J_{1,125} = J_{9,125} = 1.7), 2.92-3.23 (overlapping m, 2, H₁ and H₉), 3.23-3.66 (averlapping m, 2, H₃ and H₇), 3.76 (s, 6, COOCH₃), 5.64 (d-d, 1, H₅, J_{4,5} = 11.0, J_{5,7} = 2.0), 5.98-6.67 (pair of broad t-like d-d, 2, H₁₃ and H₁₄), and 7.15 (d-d, 1, H₄, J_{4,5} = 11.0, J_{3,4} = 8.0). These signal assignments were made on the basis of spin-decoupling.

401

Structural assignment of 5 was easily made by comparison of the above spectral data with those of 3. The nmr data of 6 show the spectral features of 2,3-anti-7-trisubstituted norbornene derivatives.³ The existence of a plane of symmetry in $\underline{6}$ is suggested by the observations that the bridgehead protons, H₁ and H_{4r} appear at an identical position (δ 3.67) and that addition of Eu(DPM)₃ does not result in splitting of the signals due to COOCH₃ and the bridgehead protons. Irradiation at the signals due to the bridgehead protons and the C₇ proton (triple resonance) revealed H_5 and H_6 as signals of a symmetrical A_2B_2 type. Irradiation at the signals due to the bridgehead protons alone (double resonance) does not result in signals of a clean A_2B_2 type. These results indicate the presence of a long-range coupling (about 0.7 Hz) between the C₇ proton and the C₅ (or C₆) proton, so that the protons must be in a "W-letter" arrangement; therefore, the C₇ proton is syn to the COOCH₃ groups.⁴ The uptake of 4 moles on catalytic reduction; the uv max; the ir bands at 1629 and 1595 cm⁻¹; and the presence of 5 vinyl protons by integration of the nmr can be accomodated if 6 is assumed to be a monosubstituted tropone connected with the above norbornene system (for tropone, uv max (n-hexane) 229 mµ (# 25000) and 305 (~8000)). Then, what position on the tropone ring, α , β , or γ , is connected with the anti-7 position on the norbornene ring? In the presence of $Eu(DPM)_3$, nmr signals due to the tropone protons of 6 appear as two sets of doublets (H₃ and H₇) and three sets of triplet-like doublets of doublets (H_4 ', H_5 ', and H_6 '), which is a pattern specific for a monosubstituted tropones, but not for β or Y-monosubstituted tropones.⁵ In addition, the vicinal coupling constants obtained are in the same order of magnitude as the corresponding values reported for some a-substituted tropones.⁶ Thus, the structure 6 was concluded. The third compound 7 was found to be identical with the major product from the reaction of 1 with dimethyl norbornadiene-2,3-dicarboxylate and the structure was determined as reported in the accompanying communication.

We have not yet obtained any evidence against our proposal that the formation of adducts such as 3 and 5 is due to a concerted $[\pi 6 + \sigma^2 + \sigma^2]$ cycloaddition. The formation of 6 can be accommodated by a diradical pathway; addition of 1 to 4 provides a diradical intermediate 9, the cyclopropane ring of which undergoes ring opening to give 10, hydrogen shift then leading to 6.

REFERENCES

- 1. H. Tanida and T. Tsushima, Tetrahedron Letters, 1972,
- 2. Because of technical difficulties, there remain some ambiguities.
- The best reference compounds are perhaps anti-9-benzonorbornenyl derivatives. The nmr data for these compounds are seen in (a) K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji, and H. Tanida, Tetrahedron Letters <u>1966</u>, 17; (b) H. Tanida, T. Tsuji, and T. Irie, J. Org. Chem. <u>31</u>, 3941 (1966).
- 4. Furthermore, the C₇ proton in 6 appears as a broad singlet-like multiplet which is compatible with the signal pattern of the syn-9 proton in 9-benzonorbornenyl derivatives, but not with that (triplet) of the anti-9 proton.³
- 5. When a sufficient amount of shift reagent is added, the chemical shifts between protons of the tropone ring are enlarged, and the signals are broadened making the small long-range coupling constants vague. Under such conditions the proposed nmr patterns are; for α-substituted tropone, two sets of doublets (H₃ and H₇) and three sets of triplet-like doublets of doublets (H₄, H₅, and H₆); for β-substituted tropone, one broad singlet (H₂), two sets of doublets (H₄ and H₇), and two sets of triplet-like doublets of doublets (H₂, H₃, H₅, and H₆); for γ-substituted tropone, four sets of doublets (H₂, H₃, H₅, and H₇) and one triplet-like doublets (H₄).
- D. J. Bertelli, T. G. Andrews, Jr., and P. O. Crews, <u>J. Amer. Chem. Soc.</u> <u>91</u>, 5286 (1969). Refer to the data of 2-chlorotropone and 2-methoxytropone.